Strong instability of solitary waves for nonlinear Klein–Gordon equations and generalized Boussinesq equations
نویسندگان
چکیده
منابع مشابه
Strong instability of solitary waves for nonlinear Klein-Gordon equations and generalized Boussinesq equations
We study here instability problems of standing waves for the nonlinear Klein-Gordon equations and solitary waves for the generalized Boussinesq equations. It is shown that those special wave solutions may be strongly unstable by blowup in finite time, depending on the range of the wave’s frequency or the wave’s speed of propagation and on the nonlinearity.
متن کاملStrong Instability of Standing Waves for Nonlinear Klein-gordon Equations
The strong instability of ground state standing wave solutions eφω(x) for nonlinear Klein-Gordon equations has been known only for the case ω = 0. In this paper we prove the strong instability for small frequency ω.
متن کاملExplicit Solutions of Generalized Nonlinear Boussinesq Equations
By considering the Adomian decomposition scheme, we solve a generalized Boussinesq equation. The method does not need linearization or weak nonlinearly assumptions. By using this scheme, the solutions are calculated in the form of a convergent power series with easily computable components. The decomposition series analytic solution of the problem is quickly obtained by observing the existence ...
متن کاملStrong instability of solitary waves for nonlinear Klein–Gordon equations and generalized Boussinesq equations Instabilité forte d’ondes solitaires pour des équations de Klein–Gordon non linéaires et des équations généralisées de Boussinesq
We study here instability problems of standing waves for the nonlinear Klein–Gordon equations and solitary waves for the generalized Boussinesq equations. It is shown that those special wave solutions may be strongly unstable by blowup in finite time, depending on the range of the wave’s frequency or the wave’s speed of propagation and on the nonlinearity. © 2006 Elsevier Masson SAS. All rights...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2007
ISSN: 0294-1449
DOI: 10.1016/j.anihpc.2006.03.005